Adams, W.J., Kimerle, R.A., & Mosher, R.G. (1985). Aquatic Safety Assessment of Chemicals Sorbed to Sediments. In R.D. Cardwell, R. Purdy, & R. Comotto Bahner (Eds.), Aquatic Toxicology and Hazard Assessment: Seventh Symposium (pp. 429–453). 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International.
Agrawal, Abinash, & Tratnyek, Paul G. (1996). Reduction of Nitro Aromatic Compounds by Zero-Valent Iron Metal. Environmental Science & Technology, 30(1), 153–160. https://doi.org/10.1021/es950211h
Ambrose, Robert B., Wool, Tim, & Martin, James L. (1993). The Water Quality Analysis Simulation Program, WASP5 Part A: Model Documentation.
Anchor QEA, LLC. (2019). Basis of Design Report for Cap Installation. Detroit River — Detroit Riverfront Conservancy RiverWalk Shore Stabilization Project. Retrieved from
Anchor QEA, LLC. (2020). Revised Final Design Report, Version 4. Former Portland Gas Manufacturing Site. Retrieved from
Anchor QEA, LLC. (2021). Project Completion Report. Former Portland Gas Manufacturing Site. Retrieved from
Anderson, Mary P., & Woessner, William W. (1992). Applied groundwater modeling: simulation of flow and advective transport. San Diego: Academic Press.
Arcadis, and Tetra Tech. September 2020. Porewater and Discharge Sampling Data Report. Lower 8.3 Miles of the Lower Passaic River, Operable Unit 2, Diamond Alkali Superfund Site, Essex, Hudson, Bergen, and Passaic Counties, New Jersey, Revision 3.
Arcadis. (2014a). Downstream Areas Data Assessment Report, Revision 5. Mayflower Pipeline Incident, Mayflower, Arkansas. Retrieved from https://www.adeq.state.ar.us/hazwaste/mayflower-oil-spill/
Arcadis. (2014b). Mitigation Action Plan, Revision 1. Mayflower Pipeline Incident Response, Mayflower, Arkansas. Retrieved from https://www.adeq.state.ar.us/hazwaste/mayflower-oil-spill/
Arcadis. (2015). Mitigation Action Completion Report, Revision 1. Mayflower Pipeline Incident Response, Mayflower, Arkansas. Retrieved from https://www.adeq.state.ar.us/hazwaste/mayflower-oil-spill/
Arcadis. (2017). Discontinuation of Sheen Monitoring, Post-Construction Maintenance. Mayflower Pipeline Incident Response, Mayflower, Arkansas. Retrieved from https://www.adeq.state.ar.us/hazwaste/mayflower-oil-spill/
Arcadis. (2021). Treatability Study Evaluation Report. Lower 8.3 Miles of the Lower Passaic River, Operable Unit 2, Diamond Alkali Superfund Site, Essex, Hudson, Bergen, and Passaic Counties, New Jersey. Revision 6.
Arcadis of Michigan. (2018). OU1 Construction Completion Report, Manistique River AOC.
Arcadis of Michigan. (2020). OU2 Construction Completion Report, Manistique River AOC.
ASTM. (2017). Standard Test Methods for Determining the Oil Sorption Capacity of Organophilic Clay. In. West Conshohocken, PA: ASTM International.
ASTM. (2018a). Standard Guide for Sediment Corrective Action — Monitoring. In. West Conshohocken, PA: ASTM International.
ASTM. (2018b). Standard Guide for Selection and Application of Analytical Methods and Procedures Used during Sediment Corrective Action. In. West Conshohocken, PA: ASTM International.
ASTM. (2018c). Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). In. West Conshohocken, PA: ASTM International.
ASTM. (2019). Standard Guide for Core Sampling Submerged, Unconsolidated Sediments. In. West Conshohocken, PA: ASTM International.
ASTM. 2020. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). D2487-17. West Conshohocken, PA. Last Updated: April 2, 2020. DOI: 10.1520/D2487-17.
ASTM. (2021). Standard Guide for NAPL Mobility and Migration in Sediment — Evaluating Ebullition and Associated NAPL/Contaminant Transport. In. West Conshohocken, PA: ASTM International.
ASTM. (2022). Standard Guide for NAPL Mobility and Migration in Sediments — Evaluation Metrics. In. West Conshohocken, PA: ASTM International.
Australasian Chapter of the International Geosynthetics Society. (2023). Subaqueous Capping of Highly Contaminated Sediments at Kendall Bay — Case Study. Retrieved from https://www.acigs.org/news/subaqueous-capping-highly-contaminated-sediments-kendall-bay-case-study
Bibi, Irshad, Niazi, Nabeel Khan, Choppala, Girish, & Burton, Edward D. (2018). Chromium(VI) removal by siderite (FeCO3) in anoxic aqueous solutions: An X-ray absorption spectroscopy investigation. Science of the Total Environment, 640-641, 1424-1431. https://doi.org/10.1016/j.scitotenv.2018.06.003
Boudreau, Bernard P. (1998). Mean mixed depth of sediments: The wherefore and the why. Limnology and Oceanography, 43(3), 524-526. https://doi.org/10.4319/lo.1998.43.3.0524
Boyer, Jean M, Steven C Chapra, Carlos E Ruiz, and Mark S Dortch. 1994. RECOVERY, A Mathematical Model to Predict the Temporal Response of Surface Water to Contaminated Sediments. Army Foreign Science and Technology Center, Charlottesville, VA
Burgess, Robert M., Cantwell, Mark G., Pelletier, Marguerite C., Ho, Kay T., Serbst, Jonathan R., Cook, Howard F., & Kuhn, Anne. (2000). Development of a toxicity identification evaluation procedure for characterizing metal toxicity in marine sediments. Environmental Toxicology and Chemistry, 19(4), 982-991. https://doi.org/10.1002/etc.5620190427
Burkhard, Lawrence P, Mount, David R, & Burgess, Robert M. (2017). Developing sediment remediation goals at superfund sites based on pore water for the protection of benthic organisms from direct toxicity to non-ionic organic contaminants. In: Office of Research and Development, National Human and Environmental Effects Research Laboratory.
Chen, Wright, Judith V., Conca, James L., & Peurrung, Loni M. (1997). Effects of pH on Heavy Metal Sorption on Mineral Apatite. Environmental Science & Technology, 31(3), 624-631. https://doi.org/10.1021/es950882f
Chilton, T. H., & Colburn, A. P. (1934). Mass Transfer (Absorption) Coefficients Prediction from Data on Heat Transfer and Fluid Friction. Industrial & Engineering Chemistry, 26(11), 1183-1187. https://doi.org/10.1021/ie50299a012
Cho, Yeo-Myoung, Upal Ghosh, Alan J Kennedy, Adam Grossman, Gary Ray, Jeanne E Tomaszewski, Dennis W Smithenry, Todd S Bridges, and Richard G Luthy. 2009. Field application of activated carbon amendment for in-situ stabilization of polychlorinated biphenyls in marine sediment. Environmental science & technology 43 (10):3815-3823. https://doi.org/10.1021/es802931c
Cho, Yeo-Myoung, Smithenry, Dennis W., Ghosh, Upal, Kennedy, Alan J., Millward, Rod N., Bridges, Todd S., & Luthy, Richard G. (2007). Field methods for amending marine sediment with activated carbon and assessing treatment effectiveness. Marine environmental research, 64(5), 541-555. https://doi.org/10.1016/j.marenvres.2007.04.006
Choudhury, H, Cogliano, J, Hertzberg, R, Mukerjee, D, Rice, G, & Teuschler, L. (2000). Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures. EPA/630/R-00/002. US Environmental Protection Agency Washington, DC.
Clarke, Douglas G, Michael R Palermo, Thomas C Sturgis, and Robert M Engler. 2001. Subaqueous cap design: Selection of bioturbation profiles, depths, and process rates. Engineer Research and Development Center, Vicksburg, MS Environmental Lab.
Cole, Thomas M, & Wells, Scott A. (2006). CE-QUAL-W2: A two-dimensional, laterally averaged, hydrodynamic and water quality model, version 3.5.
Committee, D18. Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). Retrieved from
Conca, James L., & Wright, Judith. (2006). An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd. Applied Geochemistry, 21(8), 1288-1300. https://doi.org/10.1016/j.apgeochem.2006.06.008
Connolly, John P., Zahakos, Harry A., Benaman, Jennifer, Ziegler, C. Kirk, Rhea, James R., & Russell, Kevin. (2000). A Model of PCB Fate in the Upper Hudson River. Environmental Science & Technology, 34(19), 4076-4087. https://doi.org/10.1021/es001046v
Cornelissen, Gerard, Haftka, Joris, Parsons, John, & Gustafsson, Örjan. (2005). Sorption to Black Carbon of Organic Compounds with Varying Polarity and Planarity. Environmental Science & Technology, 39(10), 3688-3694. https://doi.org/10.1021/es048346n
Crannell, Bradley S., Eighmy, T. Taylor, Willson, C., Reible, D.D, & Yin, M. (2004). Pilot-scale reactive barrier technologies for containment of metal-contaminated sediments and dredged materials. Submitted to The NOAA/UNH Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET). November.
Dewitt, T.H., Jones, J.K.P., Ozretich, R.J., Swartz, R.C., Lamberson, J.O., Schults, D.W., Ditsworth, G.R., Smith, L.M. and Hoselton, L. 1992. The influence of organic matter quality on the toxicity and partitioning of sediment-associated fluoranthene. Environmental Toxicology and Chemistry, 11: 197-208. https://doi.org/10.1002/etc.5620110209
Di Toro, Dominic M., Christopher S. Zarba, David J. Hansen, Walter J. Berry, Richard C. Swartz, Christina E. Cowan, Spyros P. Pavlou, Herbert E. Allen, Nelson A. Thomas, and Paul R. Paquin. 1991. “Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning.” Environmental Toxicology and Chemistry 10 (12): 1541-1583. https://doi.org/10.1002/etc.5620101203.
Diersch, Hans-Jörg G. (2013). FEFLOW: finite element modeling of flow, mass and heat transport in porous and fractured media: Springer Science & Business Media.
Diersch, Hans-Jörg G. (2014). FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media. Berlin, Heidelberg: Springer Berlin Heidelberg.
EA, & Foth. April 2013. Final Conceptual Site Model for the Manistique River Area of Concern, Schoolcraft County, Michigan. Revision 01.
Fitts Geosolutions, LLC. (2022). AnAqSim User Guide, Analytic Aquifer Simulator. Retrieved from https://www.fittsgeosolutions.com/AnAqSimUserGuide.pdf
Fitzpatrick, Faith A, Boufadel, Michel C, Johnson, Rex, Lee, Kenneth, Graan, Thomas P, Bejarano, Adriana C, . . . Hayter, Earl. (2015). Oil-Particle Interactions and Submergence from Crude Oil Spills in Marine and Freshwater Environments: Review of the Science and Future Science Needs. In. https://doi.org/10.3133/ofr20151076
Gavaskar, Arun, Chattopadhyay, Sandip, Lal, Vivek, Hackworth, Mary, & Sugiyama, Barbara. (2005). An Innovative Capping Technology for Contaminated Sediments. https://doi.org/10.13140/RG.2.2.11776.12803
Gefell, Michael J., Kanematsu, Masa, Vlassopoulos, Dimitri, & Lipson, David S. (2018). Aqueous-Phase Sampling with NAPL Exclusion Using Ceramic Porous Cups. Groundwater, 56(6), 847-851. https://doi.org/10.1111/gwat.12827
Gefell, Michael J., Larue, Mark, & Russell, Kevin. (2019). Vertical Hydraulic Conductivity Measurement by Gravity Drainage. Groundwater, 57(4), 511-516. https://doi.org/10.1111/gwat.12911
Gentry, Jeff L, Salter‐Blanc, Alexandra, Sheets, Keith, Sharma, Bhawana, Tochko, Laura, & Martin, Scott. (2020). Novel shoreline cap for controlling sheen and dissolved‐phase constituent discharge. Remediation Journal, 30(2), 5-14. https://doi.org/10.1002/rem.21642
Ghosh, Upal, Luthy, Richard G., Cornelissen, Gerard, Werner, David, & Menzie, Charles A. (2011). In-situ Sorbent Amendments: A New Direction in Contaminated Sediment Management. Environmental Science & Technology, 45(4), 1163-1168. https://doi.org/10.1021/es102694h
Gilmour, Cynthia C., Georgia S. Riedel, Gerhardt Riedel, Seokjoon Kwon, Richard Landis, Steven S. Brown, Charles A. Menzie, and Upal Ghosh. 2013. “Activated Carbon Mitigates Mercury and Methylmercury Bioavailability in Contaminated Sediments.” Environmental Science & Technology 47 (22): 13001-13010. https://doi.org/10.1021/es4021074.
Go, Jason, Lampert, David J., Stegemann, Julia A., & Reible, Danny D. (2009). Predicting contaminant fate and transport in sediment caps: Mathematical modelling approaches. Applied Geochemistry, 24(7), 1347-1353. https://doi.org/10.1016/j.apgeochem.2009.04.025
Gomez-Eyles, Jose L., Yupanqui, Carmen, Beckingham, Barbara, Riedel, Georgia, Gilmour, Cynthia, & Ghosh, Upal. (2013). Evaluation of Biochars and Activated Carbons for In Situ Remediation Of Sediments Impacted With Organics, Mercury, And Methylmercury. Environmental Science & Technology, 47(23), 13721-13729. https://doi.org/10.1021/es403712q
Grossman, Adam, & Ghosh, Upal. (2009). Measurement of activated carbon and other black carbons in sediments. Chemosphere, 75(4), 469-475. https://doi.org/10.1016/j.chemosphere.2008.12.054
Guidelines for exposure assessment, 57(104) C.F.R. (1992).
Guo, Huaming, Li, Yuan, Zhao, Kai, Ren, Yan, & Wei, Chao. (2011). Removal of arsenite from water by synthetic siderite: Behaviors and mechanisms. Journal of Hazardous Materials, 186(2-3), 1847-1854. https://doi.org/10.1016/j.jhazmat.2010.12.078
Hamrick, John M. (1992). A three-dimensional environmental fluid dynamics computer code: Theoretical and computational aspects. In Special report in applied marine science and ocean engineering ; no. 317. https://doi.org/10.21220/V5TT6C
Hawthorne, Steven B., Grabanski, Carol B., & Miller, David J. (2006). MEASURED PARTITIONING COEFFICIENTS FOR PARENT AND ALKYL POLYCYCLIC AROMATIC HYDROCARBONS IN 114 HISTORICALLY CONTAMINATED SEDIMENTS: PART 1. KOC VALUES. Environmental Toxicology and Chemistry, 25(11), 2901. https://doi.org/10.1897/06-115R.1
Hawthorne, Steven B., Grabanski, Carol B., Miller, David J., & Arp, Hans Peter H. (2011). Improving Predictability of Sediment-Porewater Partitioning Models using Trends Observed with PCB-Contaminated Field Sediments. Environmental Science & Technology, 45(17), 7365-7371. https://doi.org/10.1021/es200802j
Henry, Tala, Philip Cook, Patricia Cirone, Michael Devito, Bruce Duncan, Robert Pepin, Scott Schwenk, and Steven Wharton. 2008. “Framework for application of the toxicity equivalence methodology for polychlorinated dioxins, furans and biphenyls in ecological risk assessment.” Organohalogen compounds 65: 300-303.
Huh, Jae-Hoon, Young-Hoon Choi, Hyun-Jae Lee, Woo Jeong Choi, Chilakala Ramakrishna, Hyoung-Woo Lee, Shin-Haeng Lee, Ji-Whan Ahn, Jae-Hoon Huh, and Young-Hoon Choi. 2016. “The use of oyster shell powders for water quality improvement of lakes by algal blooms removal.” Journal of the Korean Ceramic Society 53 (1): 1-6
Hull, J.H., Collins, J. , Collins, S. , Jersak, J. , Lee, T. , & Hritsuk, E. (2015, December 2 and 3). Quality Control Aspects of Active Cap Materials & Placement at East Branch Grand Calumet River: Evaluation of Sorption Characteristics of AquaGate+OrganoclayTM Coated Materials. Paper presented at the Sediment Management Work Group Fall Meeting, Arlington, Virginia.
Hull, John H., Jersak, Joseph M., & McDonald, Blair J. (1998). Examination of a New Remedial Technology for Capping Contaminated Sediments: Large-Scale Laboratory Evaluation of Sediment Mixing and Cap Resistance to Erosive Forces. Remediation Journal, 8(3), 37-58. https://doi.org/10.1002/rem.3440080305
Huls, Hubert H, & Costello, M. (2005). Designing assessments for decision making for remediation of contaminated sediments. Paper presented at the Third International Conference on Remediation of Contaminated Sediments, New Orleans, LA.
International, ASTM. (2009). Standard Practice for Description and Identification of Soils: Visual-manual Procedure: ASTM International.
Irshad, Bibi, Nabeel Khan, Niazi, Girish, Choppala, & Edward, D. Burton. (2018). Chromium(VI) removal by siderite (FeCO3) in anoxic aqueous solutions: An X-ray absorption spectroscopy investigation. Science of the Total Environment, 640-641, 1424-1431. https://doi.org/10.1016/j.scitotenv.2018.06.003
ITRC. (2008). Use of risk assessment in management of contaminated sites. RISK-2. Retrieved from Washington, DC: https://projects.itrcweb.org/risk-3/Content/Resources/ITRC2008RISK-2.pdf
ITRC. (2011). Incorporating Bioavailability Considerations into the Evaluation of Contaminated Sediment Sites. CS-1. Retrieved from Washington, DC: https://projects.itrcweb.org/contseds-bioavailability/
ITRC. (2012). Incremental sampling methodology. ISM-1. Retrieved from Washington, DC:
ITRC. (2014). Contaminated Sediments Remediation: Remedy Selection for Contaminated Sediments (CS-2). Retrieved from Washington, DC: https://projects.itrcweb.org/contseds_remedy-selection/
ITRC. (2016). Long-Term Contaminant Management Using Institutional Controls. Retrieved from Washington, DC: https://institutionalcontrols.itrcweb.org/
ITRC. (2021). Sustainable resilient remediation SRR‐1. Retrieved from Washington, DC: https://srr-1.itrcweb.org/
Jacobs, P.H., & Waite, T.D. (2004). The role of aqueous iron(II) and manganese(II) in sub-aqueous active barrier systems containing natural clinoptilolite. Chemosphere, 54(3), 313-324. https://doi.org/10.1016/S0045-6535(03)00751-3
Jacobs, Patrick H., & Förstner, Ulrich. (1999). Concept of subaqueous capping of contaminated sediments with active barrier systems (ABS) using natural and modified zeolites. Water Research, 33(9), 2083-2087. https://doi.org/10.1016/S0043-1354(98)00432-1
Jones, CA, & Lick, W. (2001). SEDZLJ: A sediment transport model. Final Report. Retrieved from Santa Barbara, California:
Jonker, Michiel T. O., Sinke, Anja J. C., Brils, Jos M., & Koelmans, Albert A. (2003). Sorption of Polycyclic Aromatic Hydrocarbons to Oil Contaminated Sediment: Unresolved Complex? Environmental Science & Technology, 37(22), 5197-5203. https://doi.org/10.1021/es0300564
Kanel, Sushil Raj, Manning, Bruce, Charlet, Laurent, & Choi, Heechul. (2005). Removal of Arsenic(III) from Groundwater by Nanoscale Zero-Valent Iron. Environmental Science & Technology, 39(5), 1291-1298. https://doi.org/10.1021/es048991u
Kirtay, Victoria, Gunther Rosen, Marienne Colvin, Joel Guerrero, Lewis Hsu, Ernie Arias, Robert K Johnston, Bart Chadwick, Jennifer Arblaster, and Melissa Grover. 2017. Demonstration of In Situ Treatment with Reactive Amendments for Contaminated Sediments in Active DoD Harbors. ERDC Vicksburg United States.
Knox, Anna Sophia, Paller, Michael H., Milliken, Charles E., Redder, Todd M., Wolfe, John R., & Seaman, John. (2016). Environmental impact of ongoing sources of metal contamination on remediated sediments. Science of the Total Environment, 563-564, 108-117. https://doi.org/10.1016/j.scitotenv.2016.04.050
Knox, Anna Sophia, Paller, Michael Huntz, & Dixon, Kenneth Lamar. (2014). Evaluation of Active Cap Materials for Metal Retention in Sediments. Remediation Journal, 24(3), 49-69. https://doi.org/10.1002/rem.21394
Kraaij, Rik, Seinen, Willem, Tolls, Johannes, Cornelissen, Gerard, & Belfroid, Angelique C. (2002). Direct Evidence of Sequestration in Sediments Affecting the Bioavailability of Hydrophobic Organic Chemicals to Benthic Deposit-Feeders. Environmental Science & Technology, 36(16), 3525-3529. https://doi.org/10.1021/es0102787
Kupryianchyk, D., Rakowska, M. I., Grotenhuis, J. T. C., & Koelmans, A. A. (2012). Modeling Trade-off between PAH Toxicity Reduction and Negative Effects of Sorbent Amendments to Contaminated Sediments. Environmental Science & Technology, 46(9), 4975-4984. https://doi.org/10.1021/es2044954
Kupryianchyk, D., Reichman, E. P., Rakowska, M. I., Peeters, E. T. H. M., Grotenhuis, J. T. C., & Koelmans, A. A. (2011). Ecotoxicological Effects of Activated Carbon Amendments on Macroinvertebrates in Nonpolluted and Polluted Sediments. Environmental Science & Technology, 45(19), 8567-8574. https://doi.org/10.1021/es2014538
Kwon, Seokjoon, Jeff Thomas, Brian E. Reed, Laura Levine, Victor S. Magar, Daniel Farrar, Todd S. Bridges, and Upal Ghosh. 2010. “Evaluation of sorbent amendments for in situ remediation of metal contaminated sediments.” Environmental Toxicology and Chemistry: 1883-1892. https://doi.org/10.1002/etc.249.
Langevin, Christian D, Hughes, Joseph D, Provost, Alden, Niswonger, Richard, Russcher, Martijn J, Panday, Sorab, & Merrick, Damian. (2022). MODFLOW Version 6.3.0, the U.S. Geological Survey Modular Hydrologic Model: U.S. Geological Survey.
Langevin, Christian D., Hughes, Joseph D., Banta, Edward, Provost, Alden, Niswonger, Richard, & Panday, Sorab. (2017). MODFLOW 6, the U.S. Geological Survey Modular Hydrologic Model: U.S. Geological Survey.
Lee, Seungbae, An, Jinsung, Kim, Young-Jin, & Nam, Kyoungphile. (2011). Binding strength-associated toxicity reduction by birnessite and hydroxyapatite in Pb and Cd contaminated sediments. Journal of Hazardous Materials, 186(2-3), 2117-2122. https://doi.org/10.1016/j.jhazmat.2010.12.126
Li, Xiao-qin, Elliott, Daniel W., & Zhang, Wei-xian. (2006). Zero-Valent Iron Nanoparticles for Abatement of Environmental Pollutants: Materials and Engineering Aspects. Critical Reviews in Solid State and Materials Sciences, 31(4), 111-122. https://doi.org/10.1080/10408430601057611
Liu, Y., Reible, D., & Hussain, F. (2022). Roles of Tidal Cycling, Hyporheic Exchange and Bioirrigation on Metal Release From Estuary Sediments. Water Resources Research, 58(4), e2021WR030790. https://doi.org/10.1029/2021WR030790
Liu, Y., Reible, D., Hussain, F., & Fang, H. (2019). Role of Bioroughness, Bioirrigation, and Turbulence on Oxygen Dynamics at the Sediment‐Water Interface. Water Resources Research, 55(10), 8061-8075. https://doi.org/10.1029/2019WR025098
Luthy, Richard G, Yeo-Myoung Cho, Upal Ghosh, Todd S Bridges, and Alan J Kennedy. 2009. Field testing of activated carbon mixing and in situ stabilization of PCBs in sediment. Environmental Security Technology Certification Program.
Lydy, Michael J, Landrum, Peter F, Oen, Amy Mp, Allinson, Mayumi, Smedes, Foppe, Harwood, Amanda D, . . . Liu, Jingfu. (2014). Passive sampling methods for contaminated sediments: State of the science for organic contaminants. Integrated Environmental Assessment and Management, 10(2), 167-178. https://doi.org/10.1002/ieam.1503
Ma, Liwang, Southwick, Lloyd M., Willis, Guye H., & Selim, H. Magdi. (1993). Hysteretic Characteristics of Atrazine Adsorption-Desorption by a Sharkey Soil. Weed Science, 41(4), 627-633. https://doi.org/10.1017/S0043174500076438
MacDonald, DD, & Ingersoll, CG. (2002). A Guidance Manual to Support the Assessment of Contaminated Sediments in Freshwater Ecosystems. Volume 1: An Ecosystem-Based Framework for Assessing and Managing Contaminated Sediments. Retrieved from Chicago, IL:
Matocha, Christopher J., Elzinga, Evert J., & Sparks, Donald L. (2001). Reactivity of Pb(II) at the Mn(III,IV) (Oxyhydr)Oxide−Water Interface. Environmental Science & Technology, 35(14), 2967-2972. https://doi.org/10.1021/es0012164
Matthews, David A., David B. Babcock, John G. Nolan, Anthony R. Prestigiacomo, Steven W. Effler, Charles T. Driscoll, Svetoslava G. Todorova, and Kenneth M. Kuhr. 2013. “Whole-lake nitrate addition for control of methylmercury in mercury-contaminated Onondaga Lake, NY.” Environmental Research 125: 52-60. https://doi.org/10.1016/j.envres.2013.03.011.
Mauger, Guillaume, Joseph Casola, Harriet Morgan, Ronda Strauch, Brittany Jones, Beth Curry, Tania Busch Isaksen, Lara Whitely Binder, Meade Krosby, and Amy Snover. 2005. “State of knowledge: Climate change in Puget Sound.” https://doi.org/10.7915/CIG93777D.
Mayer, Philipp, Thomas F Parkerton, Rachel G Adams, John G Cargill, Jay Gan, Todd Gouin, Philip M Gschwend, Steven B Hawthorne, Paul Helm, Gesine Witt, Jing You, and Beate I Escher. 2014. “Passive sampling methods for contaminated sediments: Scientific rationale supporting use of freely dissolved concentrations.” Integrated Environmental Assessment and Management 10 (2): 197-209. https://doi.org/10.1002/ieam.1508.
McDonough, Kathleen M., Fairey, Julian L., & Lowry, Gregory V. (2008). Adsorption of polychlorinated biphenyls to activated carbon: Equilibrium isotherms and a preliminary assessment of the effect of dissolved organic matter and biofilm loadings. Water Research, 42(3), 575-584. https://doi.org/10.1016/j.watres.2007.07.053
McDonough, Kathleen M., Murphy, Paul, Olsta, Jim, Zhu, Yuewei, Reible, Danny, & Lowry, Gregory V. (2007). Development and Placement of a Sorbent-Amended Thin Layer Sediment Cap in the Anacostia River. Soil and Sediment Contamination: An International Journal, 16(3), 313-322. https://doi.org/10.1080/15320380701285725
McLeod, Pamela B., Luoma, Samuel N., & Luthy, Richard G. (2008). Biodynamic Modeling of PCB Uptake by Macoma balthica and Corbicula fluminea from Sediment Amended with Activated Carbon. Environmental Science & Technology, 42(2), 484-490. https://doi.org/10.1021/es070139a
McLeod, Pamela B., Van Den Heuvel-Greve, Martine J., Luoma, Samuel N., & Luthy, Richard G. (2007). Biological Uptake of Polychlorinated Biphenyls by Macoma balthica from Sediment Amended with Activated Carbon. Environmental Toxicology and Chemistry, 26(5), 980. https://doi.org/10.1897/06-278R1.1
Menzie, C.A. February 2012. Sedimite® A Delivery System for Amending Contaminated Sediment with Activated Carbon and/or other Amendments
Menzie, Charles, Amos, Bennett, Driscoll, Susan K, Ghosh, Upal, & Gilmour, Cynthia. (2016). Evaluating the efficacy of a low-impact delivery system for in situ treatment of sediments contaminated with methylmercury and other hydrophobic chemicals. Retrieved from Alexandria, VA:
Millward, Rod N., Bridges, Todd S., Ghosh, Upal, Zimmerman, John R., & Luthy, Richard G. (2005). Addition of Activated Carbon to Sediments to Reduce PCB Bioaccumulation by a Polychaete (Neanthes arenaceodentata) and an Amphipod (Leptocheirus plumulosus). Environmental Science & Technology, 39(8), 2880-2887. https://doi.org/10.1021/es048768x
Miyake, Michihiro, Ishigaki, Kyoichi, & Suzuki, Takashi. (1986). Structure refinements of Pb2+ ion-exchanged apatites by x-ray powder pattern-fitting. Journal of Solid State Chemistry, 61(2), 230-235. https://doi.org/10.1016/0022-4596(86)90026-5
Murphy, Paul, Marquette, Andre, Reible, Danny, & Lowry, Gregory V. (2006). Predicting the Performance of Activated Carbon-, Coke-, and Soil-Amended Thin Layer Sediment Caps. Journal of Environmental Engineering, 132(7), 787-794. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:7(787)
Najm, Issam, Gallagher, Brian, Vishwanath, Nikhil, Blute, Nicole, Gorzalski, Alexander, Feffer, Adam, & Richardson, Sarah. (2021). Per‐ and polyfluoroalkyl substances removal with granular activated carbon and a specialty adsorbent: A case study. AWWA Water Science, 3(5). https://doi.org/10.1002/aws2.1245
National Academies of Sciences, Engineering, Medicine. (2008). Seismic Analysis and Design of Retaining Walls, Buried Structures, Slopes, and Embankments. Washington, DC: National Cooperative Highway Research Program, Transportation Research Board, National Academies Press.
National Research Council. (1996). Understanding risk: Informing decisions in a democratic society: National Academies Press.
National Research Council. (2003). Bioavailability of contaminants in soils and sediments: processes, tools, and applications: National Academies Press.
National Research Council. (2009). Science and decisions: advancing risk assessment. Washington, DC: National Academies Press.
New Jersey Department of Environmental Protection. (2016). Characterization of Contaminated Ground Water Discharge to Surface Water Technical Guidance. Retrieved from https://www.nj.gov/dep/srp/guidance/srra/gw_discharge_to_sw_tech_guidance.pdf.
O’Day, P. A., & Vlassopoulos, D. (2010). Mineral-Based Amendments for Remediation. Elements, 6(6), 375-381. https://doi.org/10.2113/gselements.6.6.375
Ou, Meng-Yuan, Ting, Yu, Ch’ng, Boon-Lek, Chen, Chi, Cheng, Yung-Hua, Chang, Tien-Chin, & Hsi, Hsing-Cheng. (2020). Using Mixed Active Capping to Remediate Multiple Potential Toxic Metal Contaminated Sediment for Reducing Environmental Risk. Water, 12(7), 1886. https://doi.org/10.3390/w12071886
Palermo, M, Maynord, Steve, Miller, Jan, & Reible, Danny. (1998). Guidance for in-situ subaqueous capping of contaminated sediments. Retrieved from Chicago, IL:
Palermo, Michael R, James E Clausner, Marian P Rollings, Gregory L Williams, and Tommy E Myers. 1998. Guidance for Subaqueous Dredged Material Capping. Army Engineer Waterways Experiment Station Vicksburg MS.
Park, Richard A., Clough, Jonathan S., & Wellman, Marjorie Coombs. (2008). AQUATOX: Modeling environmental fate and ecological effects in aquatic ecosystems. Ecological Modelling, 213(1), 1-15. https://doi.org/10.1016/j.ecolmodel.2008.01.015
Parrett, K, & Blishke, H. (2005). 23-acre multilayer sediment cap in dynamic riverine environment using organoclay as adsorptive capping material. SETAC Presentation.
Parsons Engineering Science, Inc. (2014). Onondaga Lake: Cap Porewater Sampling Methods Demonstration Work Plan. Retrieved from http://www.lakecleanup.com/publicdocs/docs/8a6df538-6c45-46f6-9a3f-4654b3d2625d.pdf
Patmont, Clayton R, Upal Ghosh, Paul LaRosa, Charles A Menzie, Richard G Luthy, Marc S Greenberg, Gerard Cornelissen, Espen Eek, John Collins, John Hull, Tore Hjartland, Edward Glaza, John Bleiler, and James Quadrini. 2015. “In situ sediment treatment using activated carbon: A demonstrated sediment cleanup technology.” Integrated Environmental Assessment and Management 11 (2): 195-207. https://doi.org/10.1002/ieam.1589.
Peld, Merike, Tõnsuaadu, Kaia, & Bender, Villem. (2004). Sorption and Desorption of Cd 2+ and Zn 2+ Ions in Apatite-Aqueous Systems. Environmental Science & Technology, 38(21), 5626-5631. https://doi.org/10.1021/es049831l
Pernyeszi, Timea, Kasteel, Roy, Witthuhn, Barbara, Klahre, Peter, Vereecken, Harry, & Klumpp, Erwin. (2006). Organoclays for soil remediation: Adsorption of 2,4-dichlorophenol on organoclay/aquifer material mixtures studied under static and flow conditions. Applied Clay Science, 32(3-4), 179-189. https://doi.org/10.1016/j.clay.2006.01.004
Ponder, Sherman M., Darab, John G., & Mallouk, Thomas E. (2000). Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported, Nanoscale Zero-valent Iron. Environmental Science & Technology, 34(12), 2564-2569. https://doi.org/10.1021/es9911420
Presidential/Congressional Commission. (1997). Framework for Environmental Health Risk Management. Final Report. Volume 1. Washington, DC.
Presidential/Congressional Commission. (1997). Risk Assessment and Risk Management in Regulatory Decision-Making (Final Report, Volume 2). US Government Printing Office, Washington, DC.
Quality, Oregon Department of Environmental. (2017). Record of Decision—Selected Remedial Action for Former Portland Gas Manufacturing. Portland, Oregon.
Quality, Oregon Department of Environmental. (2023). Zidell Waterfront Property.
Reible, D, Lu, X, Khanam, A, & Blischke, H. (2007). Organoclay for control of NAPLs in sediments. Paper presented at the Proceedings, 4th International Conference on Remediation of Contaminated Sediments, Battelle, Savannah, GA, USA, January.
Reible, Danny D., & Lampert, David J. (2014). Capping for Remediation of Contaminated Sediments. In Danny D. Reible (Ed.), Processes, Assessment and Remediation of Contaminated Sediments (Vol. 6, pp. 325-363). New York, NY: Springer New York.
Reible, Danny, Lampert, David, Constant, David, Mutch Jr., Robert D., & Zhu, Yuewei. (2006). Active capping demonstration in the Anacostia river, Washington, D.C. Remediation Journal, 17(1), 39-53. https://doi.org/10.1002/rem.20111
Reible, Danny, Lu, X, & Blishke, H. (2005). Organoclay for the Control of NAPLs in Sediments. Paper presented at the Society of Environmental Toxicology and Chemistry 26th Annual Meeting, Baltimore, MD.
Reible, Danny, Shen, Xiaolong, & Lampert, David. (2021). CapSim 4.0 Quick-Start Manual. In.
Remediation of Contaminated Sediments, Savannah, Georgia.
Riley, John (Manistique River AOC Coordinator). 2021. Removal Recommendation Restrictions on Dredging Activities Beneficial Use Impairment Manistique River Area of Concern.
Roelvink, JA, & Van Banning, GKFM. (1995). Design and development of DELFT3D and application to coastal morphodynamics. Oceanographic Literature Review, 11(42), 925.
Ruiz, Carlos E., Nadim M. Aziz, and Paul R. Schroeder. 2001. “RECOVERY: A contaminated sediment-water interaction model.” Environmental Modeling and Assessment 6 (3): 151-158. https://doi.org/10.1023/A:1011913512327.
Ruiz, C.E., Aziz, N.M., Schroeder, P.R., Dortch, S., & Gerald, T.K. (2007). RECOVERY Version 4.3: An improved contaminated sediment-water interaction model. Paper presented at the Fourth International Conference on
Ruiz, Carlos E., Aziz, Nadim M., & Schroeder, Paul R. (2001). RECOVERY: A contaminated sediment-water interaction model. Environmental Modeling and Assessment, 6(3), 151-158. https://doi.org/10.1023/A:1011913512327
Saeedi, M., Li, L. Y., Karbassi, A. R., & Zanjani, A. J. (2013). Sorbed metals fractionation and risk assessment of release in river sediment and particulate matter. Environmental monitoring and assessment, 185(2), 1737-1754. https://doi.org/10.1007/s10661-012-2664-3
Sayles, Gregory D., You, Guanrong, Wang, Maoxiu, & Kupferle, Margaret J. (1997). DDT, DDD, and DDE Dechlorination by Zero-Valent Iron. Environmental Science & Technology, 31(12), 3448-3454. https://doi.org/10.1021/es9701669
Shackelford, Charles D, Benson, Craig H, Katsumi, Takeshi, Edil, Tuncer B, & Lin, L. (2000). Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids. Geotextiles and Geomembranes, 18(2-4), 133-161.
Shackelford, Charles D, Benson, Craig H, Katsumi, Takeshi, Edil, Tuncer B, & Lin, L. (2000). Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids. Geotextiles and Geomembranes, 18(2-4), 133-161. https://doi.org/10.1016/S0266-1144(99)00024-2
Sharma, Bhawana, Gardner, Kevin H., Melton, Jeffrey, Hawkins, Amy, & Tracey, Gregory. (2009). Evaluation of Activated Carbon as a Reactive Cap Sorbent for Sequestration of Polychlorinated Biphenyls in the Presence of Humic Acid. Environmental Engineering Science, 26(9), 1371-1379. https://doi.org/10.1089/ees.2008.0231
Shen, Xiaolong, Lampert, David, Ogle, Stephen, & Reible, Danny. (2018). A software tool for simulating contaminant transport and remedial effectiveness in sediment environments. Environmental Modelling & Software, 109, 104-113. https://doi.org/10.1016/j.envsoft.2018.08.014
Shin, Wooseok, & Kim, Young-Kee. (2016). Stabilization of heavy metal contaminated marine sediments with red mud and apatite composite. Journal of Soils and Sediments, 16(2), 726-735. https://doi.org/10.1007/s11368-015-1279-z
Society, Australasian Chapter of the International Geosynthetics. (2023). Subaqueous Capping of highly contaminated sediments at Kendall Bay – Case Study. Retrieved from https://www.acigs.org/news/subaqueous-capping-highly-contaminated-sediments-kendall-bay-case-study
Sowers, K.R. (Producer). (2019). In-Situ PCB Dechlorination & Degradation with Bioamended GAC. Retrieved from https://clu-in.org/conf/tio/ContSed3_111319/slides/5Slide_Presentation_for_Kevin_R._Sowers,_Ph.D.,_Department_of_Marine_Biotechnology,_University_of_Maryland_Baltimore_County.pdf
Stewart, Richard, & McFarland, Ross. (2016). Leachability Characteristics of Per-and Polyfluoroalkyl Substances (PFAS) in 14 Soils from Airport Sites across Australia. In: ECOFORUM.
Sun, Xueli, & Ghosh, Upal. (2007). PCB Bioavailability Control in Lumbriculus Variegatus through Different Modes of Activated Carbon Addition to Sediments. Environmental Science & Technology, 41(13), 4774-4780. https://doi.org/10.1021/es062934e
Takeuchi, Yasushi, & Arai, Hironori. (1990). Removal of coexisting Pb2+, Cu2+ and Cd2+ ions from water by addition of hydroxyapatite powder. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 23(1), 75-80. https://doi.org/10.1252/jcej.23.75
Teal, Lr, Bulling, Mt, Parker, Er, & Solan, M. (2008). Global patterns of bioturbation intensity and mixed depth of marine soft sediments. Aquatic Biology, 2(3), 207-218. https://doi.org/10.3354/ab00052
Thibodeaux, Louis J. (1996). Environmental chemodynamics: Movement of chemicals in air, water, and soil (Vol. 110): John Wiley & Sons.
Thoma, Greg J., Reible, Danny D., Valsaraj, Kalliat T., & Thibodeaux, Louis J. (1993). Efficiency of capping contaminated sediments in situ. 2. Mathematics of diffusion-adsorption in the capping layer. Environmental Science & Technology, 27(12), 2412-2419. https://doi.org/10.1021/es00048a015
Tomaszewski, Jeanne E., Werner, David, & Luthy, Richard G. (2007). Activated Carbon Amendment as a Treatment for Residual DDT in Sediment from a Superfund Site in San Francisco Bay, Richmond, California, USA. Environmental Toxicology and Chemistry, 26(10), 2143. https://doi.org/10.1897/07-179R.1
USACE. (2011). Sea-Level Change Considerations for Civil Works Programs. In. Washington, DC: U.S. Army Corps of Engineers.
USACE. (2013). Hydrographic Surveying. EM 1110-2-1003. Washington, DC: U.S. Army Corps of Engineers, Washington, D.C. Retrieved from https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1003.pdf?ver=gDGVUj_0XR2sXHiIpQZv2Q%3d%3d.
USEPA. (1989). Risk Assessment Guidance for Superfund (RAGS), (Part A) Volume I, Human Health Evaluation Manual. EPA/540/1-89/002. Washington, DC: U.S. Environmental Protection Agency.
USEPA. (1997). Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessment, Interim Final. EPA 540-R-97-OCS. Edison, NJ: Office of Solid Waste and Emergency Response.
USEPA. (1998). Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessment. EPA 540-R-97-006, OSWER 9285.7-25, PB97-963211. Washington, DC: U.S. Environmental Protection Agency.
USEPA. (2000). Supplementary guidance for conducting health risk assessment of chemical mixtures. EPA/630/R-00/002. U.S. Environmental Protection Agency.
USEPA. (2001). Risk assessment guidance for superfund (RAGS), Volume III-Part A: Process for conducting probabilistic risk assessment, Appendix B. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, III.
USEPA. (2002a). Guidance for quality assurance project plans. Washington, DC: U.S. Environmental Protection Agency.
USEPA. (2002b). Role of Background in the CERCLA Cleanup Program. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency Retrieved from https://www.epa.gov/sites/default/files/2015-11/documents/bkgpol_jan01.pdf.
USEPA. (2005). Contaminated Sediment Remediation Guidance for Hazardous Waste Sites. EPA-540-R-05-012. Office of Solid Waste and Emergency, U.S. Environmental Protection Agency Retrieved from https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1000R7F.TXT.
USEPA. (2007). Guidance for evaluating the oral bioavailability of metals in soils for use in human health risk assessment. OSWER, 9285, 7-80.
USEPA. (2009). Guidance on the development, evaluation, and application of environmental models. EPA/100/K-09/003. Washington DC: Council for Regulatory Environmental Modeling, Office of the Science Advisor. Retrieved from https://www.epa.gov/measurements-modeling/guidance-document-development-evaluation-and-application-environmental-models.
USEPA. (2011a). Exposure Factors Handbook 2011 Edition (Final Report). EPA/600/R-090/052F. Washington, DC: U.S. Environmental Protection Agency.
USEPA. (2011b). Five Year Review Report for Tennessee Products Superfund Site. Chattanooga, TN: U.S. Environmental Protection Agency.
USEPA. (2015a). Climate change adaptation technical fact sheet: Contaminated sediment remedies. EPA 542‐F‐15‐009. U.S. Environmental Protection Agency Retrieved from https://www.epa.gov/sites/default/files/2018-08/documents/contaminated_sediments.pdf.
USEPA. (2015b). Determination of the Biologically Relevant Sampling Depth For Terrestrial and Aquatic Ecological Risk Assessments (Final Report). EPA/600/R-15/176. Cincinnati, OH: Ecological Risk Assessment Support Center Retrieved from https://www.epa.gov/sites/default/files/2015-11/documents/bkgpol_jan01.pdf.
USEPA. (2022a). Adaptive Site Management – A Framework for Implementing Adaptive Management at Contaminated Sediment Superfund Sites. Sediment Assessment and Monitoring Sheet. OLEM Directive Number 9200.1-166. U.S. Environmental Protection Agency Retrieved from https://semspub.epa.gov/work/HQ/100003040.pdf.
USEPA. (2022b, August 1, 2022). Climate Change Indicators: Weather and Climate. Retrieved from https://www.epa.gov/climate-indicators/weather-climate
USGS. (2019, February 27, 2019). Oxidation/Reduction (Redox). Retrieved from https://www.usgs.gov/mission-areas/water-resources/science/oxidationreduction-redox
Viana, Priscilla Z, & Rockne, Karl J. (2021). Fundamentals of Ebullition Facilitated NAPL and Contaminant Transport. Applied NAPL Science Review, 10(3).
Viana, Priscilla Z, & Rockne, Karl J. (2022). Assessment and Control of Ebullition Facilitated NAPL and Contaminant Transport in Sediment. Applied NAPL Science Review, 10(3).
Vlassopoulos, Dimitri, Masakazu Kanematsu, Elizabeth A. Henry, Jessica Goin, Alexander Leven, David Glaser, Steven S. Brown, and Peggy A. O’Day. 2018. “Manganese( iv ) oxide amendments reduce methylmercury concentrations in sediment porewater.” Environmental Science: Processes & Impacts 20 (12): 1746-1760. https://doi.org/10.1039/C7EM00583K.
Vlassopoulos, Dimitri, Kevin Russell, Paul Larosa, Randy Brown, Ram Mohan, Edward Glaza, Tom Drachenberg, Danny Reible, William Hague, and John McAuliffe. 2017. “Evaluation, Design, and Construction of Amended Reactive Caps to Restore Onondaga Lake, Syracuse, New York, USA.” Journal of Marine Environmental Engineering 10 (1).
Wang, Chuan-Bao, & Zhang, Wei-xian. (1997). Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs. Environmental Science & Technology, 31(7), 2154-2156. https://doi.org/10.1021/es970039c
Welty, James, Rorrer, Gregory L, & Foster, David G. (2014). Fundamentals of momentum, heat, and mass transfer: John Wiley & Sons.
Werner, David, Higgins, Christopher P., & Luthy, Richard G. (2005). The sequestration of PCBs in Lake Hartwell sediment with activated carbon. Water Research, 39(10), 2105-2113. https://doi.org/10.1016/j.watres.2005.03.019
Winter, TC, Harvey, JW, Franke, OL, & Alley, WM. (1998). Groundwater and surface water: A single resource. Circular 1139. U.S. Geological Survey.
Xu, Yuping., Schwartz, Franklin W., & Traina, Samuel J. (1994). Sorption of Zn2+ and Cd2+ on Hydroxyapatite Surfaces. Environmental Science & Technology, 28(8), 1472-1480. https://doi.org/10.1021/es00057a015
Yong, Soon Kong, Shrivastava, Manoj, Srivastava, Prashant, Kunhikrishnan, Anitha, & Bolan, Nanthi. (2015). Environmental Applications of Chitosan and Its Derivatives. In David M. Whitacre (Ed.), Reviews of Environmental Contamination and Toxicology Volume 233 (Vol. 233, pp. 1-43). Cham: Springer International Publishing.
Yozzo, David J., Wilber, Pace, & Will, Robert J. (2004). Beneficial use of dredged material for habitat creation, enhancement, and restoration in New York–New Jersey Harbor. Journal of Environmental Management, 73(1), 39-52. https://doi.org/10.1016/j.jenvman.2004.05.008
Zamora, Celia. (2008). Estimating water fluxes across the sediment-water interface in the lower Merced River, California: U.S. Department of the Interior, U.S. Geological Survey.
Zhang, Chang, Zhu, Meng-ying, Zeng, Guang-ming, Yu, Zhi-gang, Cui, Fang, Yang, Zhong-zhu, & Shen, Liu-qing. (2016). Active capping technology: a new environmental remediation of contaminated sediment. Environmental Science and Pollution Research, 23(5), 4370-4386. https://doi.org/10.1007/s11356-016-6076-8
Zhong, Gansheng, Liu, Yunsong, & Tang, Yuanyuan. (2021). Oyster shell powder for Pb(II) immobilization in both aquatic and sediment environments. Environmental Geochemistry and Health, 43(5), 1891-1902. https://doi.org/10.1007/s10653-020-00768-z
Zimmerman, John R., Ghosh, Upal, Millward, Rod N., Bridges, Todd S., & Luthy, Richard G. (2004). Addition of Carbon Sorbents to Reduce PCB and PAH Bioavailability in Marine Sediments: Physicochemical Tests. Environmental Science & Technology, 38(20), 5458-5464. https://doi.org/10.1021/es034992v
Zimmerman, John R., Werner, David, Ghosh, Upal, Millward, Rod N., Bridges, Todd S., & Luthy, Richard G. (2005). Effects of Dose and Particle Size on Activated Carbon Treatment to Sequester Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in Marine Sediments. Environmental Toxicology and Chemistry, 24(7), 1594. https://doi.org/10.1897/04-368R.1